BACKGROUND Balloon cuff based catheters limits management of patients with poor anal sphincter tone, as it puts them at high risk for device expulsion. Additionally, due to their design and indications for use, these catheters can only handle liquid to semi-liquid stool.

METHODS A systematic literature review was conducted on sphincter dysfunction and stool consistency in patients with fecal incontinence (FI). Relevant search terms were used in the PubMed database. Articles were included if they reported prevalence or data enabling calculation of crude prevalence, and excluded if they focused on any specific disease state.

RESULTS Based on the reviewed literature, 70.4% of incontinent patients had dysfunction of external anal sphincter (EAS), internal anal sphincter (IAS) or both – putting them at risk for expulsion if managed with balloon cuff based catheters. Compared to 29.6% of FI patients who exhibit adequate anal sphincter tone to support efficacious functioning of a balloon cuff based catheter, all patients, irrespective of sphincter tone, are eligible for safe and efficacious use of the Qora™ SMK. Furthermore, 29.8% of FI patients are estimated to have episodes of semi-formed stool.

CONCLUSION The Qora™ SMK is designed to manage patients with both tonic and atonic sphincters. This systematic literature review suggests that the Qora™ SMK potentially allows 3 times more FI patients to be managed with fecal catheters, due to its ability to manage patients with sphincter dysfunction and semi-formed stool who would be at risk for balloon catheter expulsion.

Table 1: Sphincter Dysfunction in FI Patients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS Dysfunction</td>
<td>26% (43/162)</td>
<td>34% (44/128)</td>
<td>35% (117/335)</td>
<td>13% (6/46)</td>
</tr>
<tr>
<td>IAS Dysfunction</td>
<td>30% (48/162)</td>
<td>35% (45/128)</td>
<td>12% (40/335)</td>
<td>20% (9/46)</td>
</tr>
<tr>
<td>EAS + IAS Dysfunction</td>
<td>33% (53/162)</td>
<td>37% (45/128)</td>
<td>28% (94/335)</td>
<td>21.20%</td>
</tr>
</tbody>
</table>

Table 2: Consistency of Stool in FI Patients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Stool and Flatus OR</td>
<td>32% (155/481)</td>
<td>43% (52/120)</td>
</tr>
<tr>
<td>Loose Stool OR</td>
<td>36% (185/514)</td>
<td>28% (33/120)</td>
</tr>
<tr>
<td>Semi-Formed Stool OR</td>
<td>28% (33/120)</td>
<td>30% (35/120)</td>
</tr>
</tbody>
</table>

BACKGROUND Stool diversion through balloon cuff based fecal management catheters is obstructed due to the ledge created by the inflated balloon. This could result in accumulation of stool around the indwelling balloon, increasing the risk of spontaneous device expulsion. Further, normal peristaltic contractions may cause collapse or occlusion of the balloon cuff, compromising the integrity of the seal to the rectum leading to peripheral stool leakage.

METHODS The catheter lumen cross-sectional area was measured for the Qora™ SMK, while data on three other fecal management catheters, the Flexi-Seal SIGNAL™ Fecal Management System (FMS, Device A), the DigniCare Stool Management System (SMS, Device B), and the Actiflo™ Indwelling Bowel Catheter System (IBC, Device C) were gathered via literature review.1 Furthermore, the Qora™ SMK and a balloon cuff based catheter, Device A were then observed and photographed during rest and simulated peristaltic contractions in a model rectum.

RESULTS The Qora™ SMK likely maintains a larger lumen cross-sectional area in a resting state and in a simulated peristaltic rectal state when compared to balloon cuff based catheters. With increase in severity of peristaltic contractions, the Qora™ SMK stayed contiguous to the rectal walls, as the self-expanding lattice structure was able to conform to wall dimension changes. Conversely, the inflated balloon cuff folded over on itself, leading to creation of leakage points between the rectal walls and catheter. Cross-sectional areas for the various devices are given in Table 1 below.

Table 1: Comparison of cross-sectional lumen area among catheters

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>Lumen Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qora</td>
<td>3.8 in² (2.451 mm²)</td>
</tr>
<tr>
<td>DEVICE A</td>
<td>1.4 in²</td>
</tr>
<tr>
<td>DEVICE B</td>
<td>0.5 in²</td>
</tr>
<tr>
<td>DEVICE C</td>
<td>0.5 in²</td>
</tr>
</tbody>
</table>

CONCLUSION The Qora™ SMK relies on a soft self-expanding lattice with large indwelling drainage lumen for stool diversion. This in-vitro study suggests that the Qora™ SMK stool diverter design comparatively decreases undesired leakage outcomes by maintaining a large lumen during both resting and peristaltic states. These in-vitro observations are in line with observations in clinical studies conducted at tertiary care centers.

The cost effectiveness of indwelling balloon cuff-based fecal management systems (FMS) has been studied.1,2 However, such catheters rely on inflatable balloons to anchor on the anorectal junction and can cause leakage of feces, get expelled from the rectum, and cannot conform to varying patient physiology, leading to higher overall time and cost burden. Clinical complications associated with FI such as pressure ulcers and \textit{Clostridium difficile} infection (C. \textit{diff}) have a high cost burden. Prevention of such clinical complications may lead to avoidance of a penalty imposed by Medicare as per the Hospital-Acquired Condition Reduction Program.

METHODS Direct daily per patient costs (in USD) of fecal incontinence management by two methods (traditional using absorbent pads and using balloon-cuff based FMS) were taken from literature.2 Direct costs for FI management with QoraTM were projected on the basis of relative stool diversion efficiency between balloon cuff-based FMS and QoraTM, as seen from proportion of leakage episodes reported in literature4 and from QoraTM’s efficacy study5. Additionally, expanded patient eligibility4 for QoraTM over balloon cuff-based FMS was factored in to project average annual cost savings to hospitals that switch to QoraTM from their current standard of care (absorbent pads only, or pads as well as FMS). Annual direct cost savings and complication costs due to FI suboptimal management were projected for sample scenarios in a 35-bedded ICU and a 20-bedded long-term acute care setting, by factoring in relevant parameters for the budget model from hospital reporting to CMS and peer-reviewed literature.5

RESULTS Direct daily per-patient costs for FI management are $152.60, $79.60, and $36.74 for each patient managed with absorbent pads, balloon-cuff based fecal management systems and QoraTM SMK respectively. Average annual cost savings of FI management were estimated to be 71-76% in these scenarios (Table 1) and complication cost burden was also computed.

Table 1. Projected Annual Cost Savings

<table>
<thead>
<tr>
<th>Type Of Center</th>
<th>Annual Direct Cost Savings (All patients managed with absorbent pads and/or balloon cuff-based FMS)</th>
<th>Complications Cost Burden*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center A Tertiary care center with a 35 bed ICU</td>
<td>$400,403 - $503,257 (71.5% - 75.9% savings)</td>
<td>$188,422 (PU) $1,363,000 (C. \textit{diff})</td>
</tr>
<tr>
<td>Center B 20 bed long term acute care hospital</td>
<td>$38,985 - $49,000 (71.5% - 75.9% savings)</td>
<td>$12,154 (PU) $245,285 (C. \textit{diff})</td>
</tr>
</tbody>
</table>

* Incremental cost burden of managing PU and contracting C. \textit{diff}

CONCLUSION Adoption of QoraTM SMK over balloon catheters can decrease the average direct cost of managing fecal incontinence in non-ambulatory patients by almost 76%. Qora’s novel design increases patient eligibility for efficacious catheter use threefold, leading to reduction in direct costs associated with FI management and reduced cost burden of complications in more patients, further helping to avoid CMS penalties for hospital-acquired conditions. Further studies are needed to validate these projections.

The Qora™ Advantage
Faster and Easier Fluid Delivery
Compared to Indwelling Balloon Catheters

BACKGROUND Regular irrigation of fecal management catheters ensures easy fluid delivery and efficacious stool diversion. Patients utilizing these devices often suffer from several acute co-morbidities requiring significant resources to enable their recovery. For this reason, it is essential that daily management practices of fecal management catheters are quick and easy for care providers.

METHODS Ease of the fluid delivery procedure was compared between the Qora™ Stool Management Kit (SMK) and two other fecal management catheters, the Flexi-Seal SIGNAL™ Fecal Management System (FMS, Device A) and the DigniShield Stool Management System (SMS, Device B). All three devices were tested for simulated-use flow rate with fluid of different viscosities: saline, 20% sucrose, and 40% sucrose. The simulated-use procedures were carried out using a gravity-fed bag placed at a height of 1.7m from the ground with devices laid horizontally at a height of 0.7m.

RESULTS The Qora™ SMK showed faster flow rates for both saline and sucrose solution tests. The simulated-use test with saline is the most relevant for daily device management procedures, where the Qora™ SM showed 135% and 126% improvement over Device A and Device B, respectively. Furthermore, the Qora™ SMK proved to have consistently enhanced performance by demonstrating faster flow rates with sucrose solutions of both 20% and 40%.

CONCLUSION The Qora™ SMK is designed to improve device management procedures for patients using fecal management catheters and reduce burden on care providers during daily device management. Enhanced flow rates under simulated-use conditions suggests that the Qora™ SMK enables care providers to spend less time on device management and more time on patient care.

BACKGROUND Prolonged fecal incontinence has a diverse aetiology and is a common condition for patients across the continuum of care¹. Current balloon cuff based catheters are placed in the anorectal junction, inflated with fluid, and utilize sphincter muscle contraction to support device patency.² This constant state of strain is exacerbated by the weight of the fluid-filled balloon, which overwhelms the continence mechanism. Clinical literature confirms this by suggesting that long-term use of intrarectal balloon cuff based catheters weakens the anal sphincter tone.³,⁴

METHODS The weight of the indwelling structure of fecal management catheters was compared between the Qora™ Stool Management Kit (SMK) and two other fecal management catheters, the Flexi-Seal SIGNAL Fecal Management System (FMS, Device A) and the DigniShield Stool Management System (SMS, Device B). Devices were deployed in-vitro according to their instructions for use manual, with balloon cuff based catheters being inflated with water and the Qora™ SMK lattice being removed from the device applicator. Weight of the indwelling portion of each device was then taken with a digital measuring scale and recorded.

RESULTS Based on in-vitro testing, the deployed weight of the indwelling portion of the fecal management catheters was 8.75g for the Qora™ SMK, 60.25g for Device A, and 74.25g for Device B.

CONCLUSION The Qora™ SMK is designed to be safely placed near the transverse rectal valves and therefore does not utilize the sphincter muscles for device patency. Furthermore, the lightweight design limits risk of the downward gravitational force inhibiting natural sphincter physiology. This in-vitro study suggests that patients who utilize the Qora™ SMK will preserve their sphincter tone over prolonged indwelling times, though further in-vivo studies may be needed to evaluate and confirm these findings.

BACKGROUND The anal sphincter muscles keep the anal orifice closed in its resting state and play a critical role in the continence mechanism. The mean anal canal diameter during evacuation is 17 ± 6 mm and clinical literature suggests the sphincter muscles experience strain at 10mm anal distension. Therefore, the trans-sphincteric zone of fecal management catheters retaining larger diameters during long-indwelling times may cause pain and an uncomfortable foreign body sensation. This could also lead to further complications like pressure induced necrosis, and sphincter dysfunction.

METHODS The insertion diameter and the indwelling sustained diameter at the trans-sphincteric zone was compared between the Qora™ Stool Management Kit (SMK) and two other fecal management catheters, the Flexi-Seal SIGNAL Fecal Management System (FMS, Device A) and the DigniShield Stool Management System (SMS, Device B). Device insertion processes were carried out according to their instructions for use manual on a benchtop model. The maximum diameters created by each device were measured using a simulated compression fixture and recorded.

RESULTS Based on in-vitro testing, the diameters retained by the fecal management catheters at the trans-sphincteric zone were 8.05mm, 13.38mm and 11.22mm for the Qora™ SMK, Device A, and Device B, respectively. Furthermore, maximum diameters created during insertion procedures were 17.78mm, 27.1mm, and 28.35mm for the Qora™ SMK, Device A, and Device B, respectively.

CONCLUSION The trans-sphincteric zone of the Qora™ SMK is designed to increase patient comfort by minimizing foreign body sensations. This in-vitro study showed that compared to balloon-cuff based catheters, Qora™ SMK maintains smaller anal diameters both during insertion and extended indwelling times. By reducing strain on the sphincter muscles, patients have reduced risk of discomfort and potential injury from long-term use.
BACKGROUND Balloon cuff based fecal management catheters rely on a large silicone retention balloon that anchors on the anorectal junction. If the pressure applied by this balloon increases beyond hydrostatic pressure in the rectal microvasculature, it can lead to necrosis of the rectal wall, which has been observed and documented in clinical findings.\(^1\) Clinical literature studying the trachea suggests that 14-22 mmHg is the optimal range of radial pressure for creating a sufficient seal without risking necrosis.\(^1\) Cuff pressure over 22 mmHg are known to compress mucosal arteries and impair blood flow, with total occlusion of arteries occuring at 36 mmHg.

METHODS The radial pressure exerted by the QoraTM SMK was measured \textit{in-vitro} using linear tensile testing – the industry standard equivalent method used to measure radial forces of cardiovascular stents. Five QoraTM SMK samples were tested, while data on three other fecal management catheters, the Flexi-Seal SIGNALTM Fecal Management System (FMS, Device A), the DigniCare Stool Management System (SMS, Device B), and the ActifloTM Indwelling Bowel Catheter System (IBC, Device C) were gathered via literature review.

RESULTS Based \textit{in-vitro} testing and analysis of clinical literature, the average radial pressure exerted on the rectal mucosa of patient was 81.2 mmHg for Device A, 32.1 mmHg for Device B, 77.8 mmHg for Device C, and 21.2 mmHg for the QoraTM SMK.

CONCLUSION The QoraTM SMK self-expanding lattice is designed to exert calibrated radial pressure to avoid complications like erythema, necrosis, and mucosal erosion. This \textit{in-vitro} study, along with pilot clinical findings, suggests that the QoraTM SMK technology exerts lower pressure when compared to other balloon cuff based fecal management catheters. Further \textit{in-vivo} studies may be needed to determine the relevance of these findings in varying patient positions and patient profiles.

BACKGROUND Fecal management catheters that rely on inflatable balloon cuffs require digital insertion by the care provider, exposing the rectal mucosa to variant forces. Also, due to the usage of the dominant finger for insertion, the overall profile of the device is large during insertion, and can lead to pain and discomfort for the patient.

METHODS Insertion, withdrawal, and expulsion forces were studied on five samples each of the Qora™ Stool Management Kit (SMK) and the Flexi-Seal SIGNAL™ Fecal Management System (FMS). The insertion, withdrawal, and expulsion forces of the study devices were measured using a linear tensile testing machine and a foam based anorectal model. Expulsion force was measured by withdrawing the device without following indicated removal process as per their instructions for use manual.

RESULTS Insertion and withdrawal forces were significantly lesser (p < 0.05) in the Qora™ SMK samples as compared to samples. Expulsion force for the Qora™ SMK was found to be 10.38 ± 0.92 N; however, the Flexi-Seal SIGNAL™ FMS samples started to break the rectal model when removed without deflating balloon.

CONCLUSION The Qora™ SMK exerts significantly less force upon the anorectal mucosa compared to balloon cuff based catheters during insertion, withdrawal, and accidental expulsions. The Qora™ SMK insertion applicator may reduce likelihood of trauma to the patient during device insertion while ensuring hygiene. The intuitive device applicator and innovative self-expanding stool diverter of the Qora™ SMK may help reduce the risk of anorectal injury during device insertion, withdrawal, or accidental device expulsions.